3D Multi-Drone-Cell Trajectory Design for Efficient IoT Data Collection

05/29/2019
by   Weisen Shi, et al.
0

Drone cell (DC) is an emerging technique to offer flexible and cost-effective wireless connections to collect Internet-of-things (IoT) data in uncovered areas of terrestrial networks. The flying trajectory of DC significantly impacts the data collection performance. However, designing the trajectory is a challenging issue due to the complicated 3D mobility of DC, unique DC-to-ground (D2G) channel features, limited DC-to-BS (D2B) backhaul link quality, etc. In this paper, we propose a 3D DC trajectory design for the DC-assisted IoT data collection where multiple DCs periodically fly over IoT devices and relay the IoT data to the base stations (BSs). The trajectory design is formulated as a mixed integer non-linear programming (MINLP) problem to minimize the average user-to-DC (U2D) pathloss, considering the state-of-the-art practical D2G channel model. We decouple the MINLP problem into multiple quasi-convex or integer linear programming (ILP) sub-problems, which optimizes the user association, user scheduling, horizontal trajectories and DC flying altitudes of DCs, respectively. Then, a 3D multi-DC trajectory design algorithm is developed to solve the MINLP problem, in which the sub-problems are optimized iteratively through the block coordinate descent (BCD) method. Compared with the static DC deployment, the proposed trajectory design can lower the average U2D pathloss by 10-15 dB, and reduce the standard deviation of U2D pathloss by 56

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro