3D Two-Hop Cellular Networks with Wireless Backhauled UAVs: Modeling and Fundamentals
In this paper, we characterize the performance of a three-dimensional (3D) two-hop cellular network in which terrestrial base stations (BSs) coexist with unmanned aerial vehicles (UAVs) to serve a set of ground user equipment (UE). In particular, UEs connect either directly to BSs by access links or indirectly through UAVs to BSs by joint access and backhaul links, where the BSs provide wireless backhaul to the UAVs. We consider realistic antenna radiation patterns for both BSs and UAVs using practical models developed by the third generation partnership project (3GPP). We assume a probabilistic channel model for the air-to-ground transmission, which incorporates both line-of-sight (LoS) and non-line-of-sight (NLoS) links. Assuming the max-power association policy, we study the performance of the network in both amplify-and-forward (AF) and decode-and-forward (DF) relaying protocols. Using tools from stochastic geometry, we analyze the joint distribution of distance and zenith angle of the closest (and serving) UAV to the origin in a 3D setting. Further, we identify and extensively study key mathematical constructs as the building blocks of characterizing the received signal-to-interference-plus-noise ratio (SINR) distribution. Using these results, we obtain exact mathematical expressions for the coverage probability in both AF and DF relaying protocols. Furthermore, considering the fact that backhaul links could be quite weak because of the downtilted antennas at the BSs, we propose and analyze the addition of a directional uptilted antenna at the BS that is solely used for backhaul purposes. The superiority of having directional antennas with wirelessly backhauled UAVs is further demonstrated via simulation.
READ FULL TEXT