A Bayesian Approach to Tackling Hard Computational Problems

01/10/2013
by   Eric J. Horvitz, et al.
0

We are developing a general framework for using learned Bayesian models for decision-theoretic control of search and reasoningalgorithms. We illustrate the approach on the specific task of controlling both general and domain-specific solvers on a hard class of structured constraint satisfaction problems. A successful strategyfor reducing the high (and even infinite) variance in running time typically exhibited by backtracking search algorithms is to cut off and restart the search if a solution is not found within a certainamount of time. Previous work on restart strategies have employed fixed cut off values. We show how to create a dynamic cut off strategy by learning a Bayesian model that predicts the ultimate length of a trial based on observing the early behavior of the search algorithm. Furthermore, we describe the general conditions under which a dynamic restart strategy can outperform the theoretically optimal fixed strategy.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro