A Class of Distributed Event-Triggered Average Consensus Algorithms for Multi-Agent Systems
This paper proposes a class of distributed event-triggered algorithms that solve the average consensus problem in multi-agent systems. By designing events such that a specifically chosen Lyapunov function is monotonically decreasing, event-triggered algorithms succeed in reducing communications among agents while still ensuring that the entire system converges to the desired state. However, depending on the chosen Lyapunov function the transient behaviors can be very different. Moreover, performance requirements also vary from application to application. Consequently, we are instead interested in considering a class of Lyapunov functions such that each Lyapunov function produces a different event-triggered coordination algorithm to solve the multi-agent average consensus problem. The proposed class of algorithms all guarantee exponential convergence of the resulting system and exclusion of Zeno behaviors. This allows us to easily implement different algorithms that all guarantee correctness to meet varying performance needs. We show that our findings can be applied to the practical clock synchronization problem in wireless sensor networks (WSNs) and further corroborate their effectiveness with simulation results.
READ FULL TEXT