A comprehensive evaluation of full-reference image quality assessment algorithms on KADID-10k

07/03/2019
by   Domonkos Varga, et al.
0

Significant progress has been made in the past decade for full-reference image quality assessment (FR-IQA). However, new large scale image quality databases have been released for evaluating image quality assessment algorithms. In this study, our goal is to give a comprehensive evaluation of state-of-the-art FR-IQA metrics using the recently published KADID-10k database which is largest available one at the moment. Our evaluation results and the associated discussions is very helpful to obtain a clear understanding about the status of state-of-the-art FR-IQA metrics.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro