A Convolutional Neural Network Approach for Half-Pel Interpolation in Video Coding

03/10/2017
by   Ning Yan, et al.
0

Motion compensation is a fundamental technology in video coding to remove the temporal redundancy between video frames. To further improve the coding efficiency, sub-pel motion compensation has been utilized, which requires interpolation of fractional samples. The video coding standards usually adopt fixed interpolation filters that are derived from the signal processing theory. However, as video signal is not stationary, the fixed interpolation filters may turn out less efficient. Inspired by the great success of convolutional neural network (CNN) in computer vision, we propose to design a CNN-based interpolation filter (CNNIF) for video coding. Different from previous studies, one difficulty for training CNNIF is the lack of ground-truth since the fractional samples are actually not available. Our solution for this problem is to derive the "ground-truth" of fractional samples by smoothing high-resolution images, which is verified to be effective by the conducted experiments. Compared to the fixed half-pel interpolation filter for luma in High Efficiency Video Coding (HEVC), our proposed CNNIF achieves up to 3.2 BD-rate reduction under low-delay P configuration.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset