A Deep Learning approach for Hindi Named Entity Recognition
Named Entity Recognition is one of the most important text processing requirement in many NLP tasks. In this paper we use a deep architecture to accomplish the task of recognizing named entities in a given Hindi text sentence. Bidirectional Long Short Term Memory (BiLSTM) based techniques have been used for NER task in literature. In this paper, we first tune BiLSTM low-resource scenario to work for Hindi NER and propose two enhancements namely (a) de-noising auto-encoder (DAE) LSTM and (b) conditioning LSTM which show improvement in NER task compared to the BiLSTM approach. We use pre-trained word embedding to represent the words in the corpus, and the NER tags of the words are as defined by the used annotated corpora. Experiments have been performed to analyze the performance of different word embeddings and batch sizes which is essential for training deep models.
READ FULL TEXT