A dual approach for federated learning

01/26/2022
by   Zhenan Fan, et al.
0

We study the federated optimization problem from a dual perspective and propose a new algorithm termed federated dual coordinate descent (FedDCD), which is based on a type of coordinate descent method developed by Necora et al. [Journal of Optimization Theory and Applications, 2017]. Additionally, we enhance the FedDCD method with inexact gradient oracles and Nesterov's acceleration. We demonstrate theoretically that our proposed approach achieves better convergence rates than the state-of-the-art primal federated optimization algorithms under mild conditions. Numerical experiments on real-world datasets support our analysis.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset