A Fast Deep Learning Model for Textual Relevance in Biomedical Information Retrieval

02/26/2018
by   Sunil Mohan, et al.
0

Publications in the life sciences are characterized by a large technical vocabulary, with many lexical and semantic variations for expressing the same concept. Towards addressing the problem of relevance in biomedical literature search, we introduce a deep learning model for the relevance of a document's text to a keyword style query. Limited by a relatively small amount of training data, the model uses pre-trained word embeddings. With these, the model first computes a variable-length Delta matrix between the query and document, representing a difference between the two texts, which is then passed through a deep convolution stage followed by a deep feed-forward network to compute a relevance score. This results in a fast model suitable for use in an online search engine. The model is robust and outperforms comparable state-of-the-art deep learning approaches.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro