A Fixed-Parameter Algorithm for the Kneser Problem

04/14/2022
by   Ishay Haviv, et al.
0

The Kneser graph K(n,k) is defined for integers n and k with n ≥ 2k as the graph whose vertices are all the k-subsets of {1,2,…,n} where two such sets are adjacent if they are disjoint. A classical result of Lovász asserts that the chromatic number of K(n,k) is n-2k+2. In the computational Kneser problem, we are given an oracle access to a coloring of the vertices of K(n,k) with n-2k+1 colors, and the goal is to find a monochromatic edge. We present a randomized algorithm for the Kneser problem with running time n^O(1)· k^O(k). This shows that the problem is fixed-parameter tractable with respect to the parameter k. The analysis involves structural results on intersecting families and on induced subgraphs of Kneser graphs. We also study the Agreeable-Set problem of assigning a small subset of a set of m items to a group of ℓ agents, so that all agents value the subset at least as much as its complement. As an application of our algorithm for the Kneser problem, we obtain a randomized polynomial-time algorithm for the Agreeable-Set problem for instances that satisfy ℓ≥ m - O(log m/loglog m). We further show that the Agreeable-Set problem is at least as hard as a variant of the Kneser problem with an extended access to the input coloring.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro