A Foliated View of Transfer Learning

08/02/2020
by   Janith Petangoda, et al.
12

Transfer learning considers a learning process where a new task is solved by transferring relevant knowledge from known solutions to related tasks. While this has been studied experimentally, there lacks a foundational description of the transfer learning problem that exposes what related tasks are, and how they can be exploited. In this work, we present a definition for relatedness between tasks and identify foliations as a mathematical framework to represent such relationships.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset