A Full Non-Monotonic Transition System for Unrestricted Non-Projective Parsing

Restricted non-monotonicity has been shown beneficial for the projective arc-eager dependency parser in previous research, as posterior decisions can repair mistakes made in previous states due to the lack of information. In this paper, we propose a novel, fully non-monotonic transition system based on the non-projective Covington algorithm. As a non-monotonic system requires exploration of erroneous actions during the training process, we develop several non-monotonic variants of the recently defined dynamic oracle for the Covington parser, based on tight approximations of the loss. Experiments on datasets from the CoNLL-X and CoNLL-XI shared tasks show that a non-monotonic dynamic oracle outperforms the monotonic version in the majority of languages.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro