A Hybrid Phase Field Model for Fracture Induced by Lithium Diffusion in Electrode Particles of Li-ion Batteries

03/17/2020
by   Masoud Ahmadi, et al.
0

Lithium-ion batteries (LIBs) of high energy density and light-weight design, have found wide applications in electronic devices and systems. Degradation mechanisms that caused by lithiation is a main challenging problem for LIBs with high capacity electrodes like silicon (Si), which eventually can reduce the lifetime of batteries. In this paper, a hybrid phase field model (PFM) is proposed to study the fracture behavior of LIB electrodes. The model considers the coupling effects between lithium (Li) -ion diffusion process, stress evolution and crack propagation. Also, the dependency of Elastic properties on the concentration magnitude of Li-ion is considered. A numerical implementation based on a MATLAB finite element (FE) code is elaborated. Then, the proposed hybrid PF approach is applied to a Nanowire (NW) Si electrode particle. It is shown that the hybrid model shows less tendency to crack growth than the isotropic model.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro