A Kernel-Based View of Language Model Fine-Tuning

10/11/2022
by   Sadhika Malladi, et al.
0

It has become standard to solve NLP tasks by fine-tuning pre-trained language models (LMs), especially in low-data settings. There is minimal theoretical understanding of empirical success, e.g., why fine-tuning a model with 10^8 or more parameters on a couple dozen training points does not result in overfitting. We investigate whether the Neural Tangent Kernel (NTK) - which originated as a model to study the gradient descent dynamics of infinitely wide networks with suitable random initialization - describes fine-tuning of pre-trained LMs. This study was inspired by the decent performance of NTK for computer vision tasks (Wei et al., 2022). We also extend the NTK formalism to fine-tuning with Adam. We present extensive experiments that show that once the downstream task is formulated as a language modeling problem through prompting, the NTK lens can often reasonably describe the model updates during fine-tuning with both SGD and Adam. This kernel view also suggests an explanation for success of parameter-efficient subspace-based fine-tuning methods. Finally, we suggest a path toward a formal explanation for our findings via Tensor Programs (Yang, 2020).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro