A Koopman Operator Tutorial with Othogonal Polynomials

11/15/2021
by   Simone Servadio, et al.
0

The Koopman Operator (KO) offers a promising alternative methodology to solve ordinary differential equations analytically. The solution of the dynamical system is analyzed in terms of observables, which are expressed as a linear combination of the eigenfunctions of the system. Coefficients are evaluated via the Galerkin method, using Legendre polynomials as a set of orthogonal basis functions. This tutorial provides a detailed analysis of the Koopman theory, followed by a rigorous explanation of the KO implementation in a computer environment, where a line-by-line description of a MATLAB code solves the Duffing oscillator application.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro