A Lexicon and Depth-wise Separable Convolution Based Handwritten Text Recognition System
Cursive handwritten text recognition is a challenging research problem in the domain of pattern recognition. The current state-of-the-art approaches include models based on convolutional recurrent neural networks and multi-dimensional long short-term memory recurrent neural networks techniques. These methods are highly computationally extensive as well model is complex at design level. In recent studies, combination of convolutional neural network and gated convolutional neural networks based models demonstrated less number of parameters in comparison to convolutional recurrent neural networks based models. In the direction to reduced the total number of parameters to be trained, in this work, we have used depthwise convolution in place of standard convolutions with a combination of gated-convolutional neural network and bidirectional gated recurrent unit to reduce the total number of parameters to be trained. Additionally, we have also included a lexicon based word beam search decoder at testing step. It also helps in improving the the overall accuracy of the model. We have obtained 3.84 word error rate on IAM dataset; 4.88 error rate in George Washington dataset, respectively.
READ FULL TEXT