A Neural Network Anomaly Detector Using the Random Cluster Model

01/28/2015
by   Robert A. Murphy, et al.
0

The random cluster model is used to define an upper bound on a distance measure as a function of the number of data points to be classified and the expected value of the number of classes to form in a hybrid K-means and regression classification methodology, with the intent of detecting anomalies. Conditions are given for the identification of classes which contain anomalies and individual anomalies within identified classes. A neural network model describes the decision region-separating surface for offline storage and recall in any new anomaly detection.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro