A Neural Network Assembly Memory Model Based on an Optimal Binary Signal Detection Theory

09/21/2003
by   Petro M. Gopych, et al.
0

A ternary/binary data coding algorithm and conditions under which Hopfield networks implement optimal convolutional or Hamming decoding algorithms has been described. Using the coding/decoding approach (an optimal Binary Signal Detection Theory, BSDT) introduced a Neural Network Assembly Memory Model (NNAMM) is built. The model provides optimal (the best) basic memory performance and demands the use of a new memory unit architecture with two-layer Hopfield network, N-channel time gate, auxiliary reference memory, and two nested feedback loops. NNAMM explicitly describes the dependence on time of a memory trace retrieval, gives a possibility of metamemory simulation, generalized knowledge representation, and distinct description of conscious and unconscious mental processes. A model of smallest inseparable part or an "atom" of consciousness is also defined. The NNAMM's neurobiological backgrounds and its applications to solving some interdisciplinary problems are shortly discussed. BSDT could implement the "best neural code" used in nervous tissues of animals and humans.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset