A New Mask R-CNN Based Method for Improved Landslide Detection
This paper presents a novel method of landslide detection by exploiting the Mask R-CNN capability of identifying an object layout by using a pixel-based segmentation, along with transfer learning used to train the proposed model. A data set of 160 elements is created containing landslide and non-landslide images. The proposed method consists of three steps: (i) augmenting training image samples to increase the volume of the training data, (ii) fine tuning with limited image samples, and (iii) performance evaluation of the algorithm in terms of precision, recall and F1 measure, on the considered landslide images, by adopting ResNet-50 and 101 as backbone models. The experimental results are quite encouraging as the proposed method achieves Precision equals to 1.00, Recall 0.93 and F1 measure 0.97, when ResNet-101 is used as backbone model, and with a low number of landslide photographs used as training samples. The proposed algorithm can be potentially useful for land use planners and policy makers of hilly areas where intermittent slope deformations necessitate landslide detection as prerequisite before planning.
READ FULL TEXT