A New Proposal of Applications of Statistical Depth Functions in Causal Analysis of Socio-Economic Phenomena Based on Official Statistics -- A Study of EU Agricultural Subsidie

08/29/2019
by   Kosiorowski Daniel, et al.
0

Results of a convincing causal statistical inference related to socio-economic phenomena are treated as especially desired background for conducting various socio-economic programs or government interventions. Unfortunately, quite often real socio-economic issues do not fulfill restrictive assumptions of procedures of causal analysis proposed in the literature. This paper indicates certain empirical challenges and conceptual opportunities related to applications of procedures of data depth concept into a process of causal inference as to socio-economic phenomena. We show, how to apply a statistical functional depths in order to indicate factual and counterfactual distributions commonly used within procedures of causal inference. The presented framework is especially useful in a context of conducting causal inference basing on official statistics, i.e., basing on already existing databases. Methodological considerations related to extremal depth, modified band depth, Fraiman-Muniz depth, and multivariate Wilcoxon sum rank statistic are illustrated by means of example related to a study of an impact of EU direct agricultural subsidies on a digital development in Poland in a period of 2012-2019.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro