A New Technique of the Virtual Reality Visualization of Complex Volume Images from the Computer Tomography and Magnetic Resonance Imaging
This paper presents a new technique for the virtual reality (VR) visu-alization of complex volume images obtained from computer tomography (CT) and Magnetic Resonance Imaging (MRI) by combining three-dimensional (3D) mesh processing and software coding within the gaming engine. The method operates on real representations of human organs avoiding any structural ap-proximations of the real physiological shape. In order to obtain realistic repre-sentation of the mesh model, geometrical and topological corrections are per-formed on the mesh surface with preserving real shape and geometric structure. Using mathematical intervention on the 3D model and mesh triangulation the second part of our algorithm ensures an automatic construction of new two-dimensional (2D) shapes that represent vector slices along any user chosen di-rection. The final result of our algorithm is developed software application that allows to user complete visual experience and perceptual exploration of real human organs through spatial manipulation of their 3D models. Thus our pro-posed method achieves a threefold effect: i) high definition VR representation of real models of human organs, ii) the real time generated slices of such a model along any directions, and iii) almost unlimited amount of training data for machine learning that is very useful in process of diagnosis. In addition, our developed application also offers significant benefits to educational process by ensuring interactive features and quality perceptual user experience.
READ FULL TEXT