A Non-asymptotic, Sharp, and User-friendly Reverse Chernoff-Cramèr Bound

10/21/2018
by   Anru Zhang, et al.
0

The Chernoff-Cramèr bound is a widely used technique to analyze the upper tail bound of random variable based on its moment generating function. By elementary proofs, we develop a user-friendly reverse Chernoff-Cramèr bound that yields non-asymptotic lower tail bounds for generic random variables. The new reverse Chernoff-Cramèr bound is used to derive a series of results, including the sharp lower tail bounds for the sum of independent sub-Gaussian and sub-exponential random variables, which matches the classic Hoefflding-type and Bernstein-type concentration inequalities, respectively. We also provide non-asymptotic matching upper and lower tail bounds for a suite of distributions, including gamma, beta, (regular, weighted, and noncentral) chi-squared, binomial, Poisson, Irwin-Hall, etc. We apply the result to develop matching upper and lower bounds for extreme value expectation of the sum of independent sub-Gaussian and sub-exponential random variables. A statistical application of sparse signal identification is finally studied.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro