A nonconforming primal hybrid finite element method for the two-dimensional vector Laplacian

06/21/2022
by   Mary Barker, et al.
0

We introduce a nonconforming hybrid finite element method for the two-dimensional vector Laplacian, based on a primal variational principle for which conforming methods are known to be inconsistent. Consistency is ensured using penalty terms similar to those used to stabilize hybridizable discontinuous Galerkin (HDG) methods, with a carefully chosen penalty parameter due to Brenner, Li, and Sung [Math. Comp., 76 (2007), pp. 573-595]. Our method accommodates elements of arbitrarily high order and, like HDG methods, it may be implemented efficiently using static condensation. The lowest-order case recovers the P_1-nonconforming method of Brenner, Cui, Li, and Sung [Numer. Math., 109 (2008), pp. 509-533], and we show that higher-order convergence is achieved under appropriate regularity assumptions. The analysis makes novel use of a family of weighted Sobolev spaces, due to Kondrat'ev, for domains admitting corner singularities.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro