A novel non-linear transformation based multi-user identification algorithm for fixed text keystroke behavioral dynamics

10/05/2022
by   Chinmay Sahu, et al.
7

In this paper, we propose a new technique to uniquely classify and identify multiple users accessing a single application using keystroke dynamics. This problem is usually encountered when multiple users have legitimate access to shared computers and accounts, where, at times, one user can inadvertently be logged in on another user's account. Since the login processes are usually bypassed at this stage, we rely on keystroke dynamics in order to tell users apart. Our algorithm uses the quantile transform and techniques from localization to classify and identify users. Specifically, we use an algorithm known as ordinal Unfolding based Localization (UNLOC), which uses only ordinal data obtained from comparing distance proxies, by "locating" users in a reduced PCA/Kernel-PCA/t-SNE space based on their typing patterns. Our results are validated with the help of benchmark keystroke datasets and show that our algorithm outperforms other methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset