A Number Theoretic Approach to Cycles in LDPC Codes
LDPC codes constructed from permutation matrices have recently attracted the interest of many researchers. A crucial point when dealing with such codes is trying to avoid cycles of short length in the associated Tanner graph, i.e. obtaining a possibly large girth. In this paper, we provide a framework to obtain constructions of such codes. We relate criteria for the existence of cycles of a certain length with some number-theoretic concepts, in particular with the so-called Sidon sets. In this way we obtain examples of LDPC codes with a certain girth. Finally, we extend our constructions to also obtain irregular LDPC codes.
READ FULL TEXT