A partial information decomposition for discrete and continuous variables

06/23/2021
by   Kyle Schick-Poland, et al.
0

Conceptually, partial information decomposition (PID) is concerned with separating the information contributions several sources hold about a certain target by decomposing the corresponding joint mutual information into contributions such as synergistic, redundant, or unique information. Despite PID conceptually being defined for any type of random variables, so far, PID could only be quantified for the joint mutual information of discrete systems. Recently, a quantification for PID in continuous settings for two or three source variables was introduced. Nonetheless, no ansatz has managed to both quantify PID for more than three variables and cover general measure-theoretic random variables, such as mixed discrete-continuous, or continuous random variables yet. In this work we will propose an information quantity, defining the terms of a PID, which is well-defined for any number or type of source or target random variable. This proposed quantity is tightly related to a recently developed local shared information quantity for discrete random variables based on the idea of shared exclusions. Further, we prove that this newly proposed information-measure fulfills various desirable properties, such as satisfying a set of local PID axioms, invariance under invertible transformations, differentiability with respect to the underlying probability density, and admitting a target chain rule.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset