A penalized criterion for selecting the number of clusters for K-medians

Clustering is a usual unsupervised machine learning technique for grouping the data points into groups based upon similar features. We focus here on unsupervised clustering for contaminated data, i.e in the case where K-medians should be preferred to K-means because of its robustness. More precisely, we concentrate on a common question in clustering: how to chose the number of clusters? The answer proposed here is to consider the choice of the optimal number of clusters as the minimization of a risk function via penalization. In this paper, we obtain a suitable penalty shape for our criterion and derive an associated oracle-type inequality. Finally, the performance of this approach with different types of K-medians algorithms is compared on a simulation study with other popular techniques. All studied algorithms are available in the R package Kmedians on CRAN.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro