A Positive and Stable L2-minimization Based Moment Method for the Boltzmann Equation of Gas dynamics

09/23/2020
by   Neeraj Sarna, et al.
0

We consider the method-of-moments approach to solve the Boltzmann equation of rarefied gas dynamics, which results in the following moment-closure problem. Given a set of moments, find the underlying probability density function. The moment-closure problem has infinitely many solutions and requires an additional optimality criterion to single-out a unique solution. Motivated from a discontinuous Galerkin velocity discretization, we consider an optimality criterion based upon L2-minimization. To ensure a positive solution to the moment-closure problem, we enforce positivity constraints on L2-minimization. This results in a quadratic optimization problem with moments and positivity constraints. We show that a (Courant-Friedrichs-Lewy) CFL-type condition ensures both the feasibility of the optimization problem and the L2-stability of the moment approximation. Numerical experiments showcase the accuracy of our moment method.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset