A posteriori error control for a Discontinuous Galerkin approximation of a Keller-Segel model
We provide a posteriori error estimates for a discontinuous Galerkin scheme for the parabolic-elliptic Keller-Segel system in 2 or 3 space dimensions. The estimates are conditional, in the sense that an a posteriori computable quantity needs to be small enough - which can be ensured by mesh refinement - and optimal in the sense that the error estimator decays with the same order as the error under mesh refinement. A specific feature of our error estimator is that it can be used to prove existence of a weak solution up to a certain time based on numerical results.
READ FULL TEXT