A Rank-Preserving Generalized Matrix Inverse for Consistency with Respect to Similarity

04/19/2018
by   Jeffrey Uhlmann, et al.
0

There has recently been renewed recognition of the need to understand the consistency properties that must be preserved when a generalized matrix inverse is required. The most widely known generalized inverse, the Moore-Penrose pseudoinverse, provides consistency with respect to orthonormal transformations (e.g., rotations of a coordinate frame), and a recently derived inverse provides consistency with respect to diagonal transformations (e.g., a change of units on state variables). Another well-known and theoretically important generalized inverse is the Drazin inverse, which preserves consistency with respect to similarity transformations. In this paper we note a limitation of the Drazin inverse is that it does not generally preserve the rank of the linear system of interest. We then introduce an alternative generalized inverse that both preserves rank and provides consistency with respect to similarity transformations. Lastly we provide an example and discuss experiments which suggest the need for algorithms with improved numerical stability.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset