A Robust Deep Learning Workflow to Predict Multiphase Flow Behavior during Geological CO2 Sequestration Injection and Post-Injection Periods

07/15/2021
by   Bicheng Yan, et al.
18

This paper contributes to the development and evaluation of a deep learning workflow that accurately and efficiently predicts the temporal-spatial evolution of pressure and CO2 plumes during injection and post-injection periods of geologic CO2 sequestration (GCS) operations. Based on a Fourier Neuron Operator, the deep learning workflow takes input variables or features including rock properties, well operational controls and time steps, and predicts the state variables of pressure and CO2 saturation. To further improve the predictive fidelity, separate deep learning models are trained for CO2 injection and post-injection periods due the difference in primary driving force of fluid flow and transport during these two phases. We also explore different combinations of features to predict the state variables. We use a realistic example of CO2 injection and storage in a 3D heterogeneous saline aquifer, and apply the deep learning workflow that is trained from physics-based simulation data and emulate the physics process. Through this numerical experiment, we demonstrate that using two separate deep learning models to distinguish post-injection from injection period generates the most accurate prediction of pressure, and a single deep learning model of the whole GCS process including the cumulative injection volume of CO2 as a deep learning feature, leads to the most accurate prediction of CO2 saturation. For the post-injection period, it is key to use cumulative CO2 injection volume to inform the deep learning models about the total carbon storage when predicting either pressure or saturation. The deep learning workflow not only provides high predictive fidelity across temporal and spatial scales, but also offers a speedup of 250 times compared to full physics reservoir simulation, and thus will be a significant predictive tool for engineers to manage the long term process of GCS.

READ FULL TEXT

page 6

page 10

page 11

page 12

research
05/08/2021

Improving Deep Learning Performance for Predicting Large-Scale Porous-Media Flow through Feature Coarsening

Physics-based simulation for fluid flow in porous media is a computation...
research
02/09/2023

The FluidFlower International Benchmark Study: Process, Modeling Results, and Comparison to Experimental Data

Successful deployment of geological carbon storage (GCS) requires an ext...
research
06/21/2022

Physics-informed machine learning with differentiable programming for heterogeneous underground reservoir pressure management

Avoiding over-pressurization in subsurface reservoirs is critical for ap...
research
04/03/2019

Including Physics in Deep Learning -- An example from 4D seismic pressure saturation inversion

Geoscience data often have to rely on strong priors in the face of uncer...
research
07/30/2021

Surrogate Modelling for Injection Molding Processes using Machine Learning

Injection molding is one of the most popular manufacturing methods for t...
research
04/05/2021

CCSNet: a deep learning modeling suite for CO_2 storage

Numerical simulation is an essential tool for many applications involvin...
research
09/09/2022

Non-isothermal direct bundle simulation of SMC compression molding with a non-Newtonian compressible matrix

Compression molding of Sheet Molding Compounds (SMC) is a manufacturing ...

Please sign up or login with your details

Forgot password? Click here to reset