A Secure Fingerprinting Framework for Distributed Image Classification

07/11/2022
by   Guowen Xu, et al.
0

The deep learning (DL) technology has been widely used for image classification in many scenarios, e.g., face recognition and suspect tracking. Such a highly commercialized application has given rise to intellectual property protection of its DL model. To combat that, the mainstream method is to embed a unique watermark into the target model during the training process. However, existing efforts focus on detecting copyright infringement for a given model, while rarely consider the problem of traitors tracking. Moreover, the watermark embedding process can incur privacy issues for the training data in a distributed manner. In this paper, we propose SECUREMARK-DL, a novel fingerprinting framework to address the above two problems in a distributed learning environment. It embeds a unique fingerprint into the target model for each customer, which can be extracted and verified from any suspicious model once a dispute arises. In addition, it adopts a new privacy partitioning technique in the training process to protect the training data privacy. Extensive experiments demonstrate the robustness of SECUREMARK-DL against various attacks, and its high classification accuracy (> 95 long-bit (304-bit) fingerprint is embedded into an input image.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro