A Sidecar Separator Can Convert a Single-Talker Speech Recognition System to a Multi-Talker One

02/20/2023
by   Lingwei Meng, et al.
0

Although automatic speech recognition (ASR) can perform well in common non-overlapping environments, sustaining performance in multi-talker overlapping speech recognition remains challenging. Recent research revealed that ASR model's encoder captures different levels of information with different layers – the lower layers tend to have more acoustic information, and the upper layers more linguistic. This inspires us to develop a Sidecar separator to empower a well-trained ASR model for multi-talker scenarios by separating the mixed speech embedding between two suitable layers. We experimented with a wav2vec 2.0-based ASR model with a Sidecar mounted. By freezing the parameters of the original model and training only the Sidecar (8.7 M, 8.4 state-of-the-art by a large margin for the 2-speaker mixed LibriMix dataset, reaching a word error rate (WER) of 10.36 (7.56

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro