A Simple LP-Based Approximation Algorithm for the Matching Augmentation Problem

02/15/2022
by   Étienne Bamas, et al.
0

The Matching Augmentation Problem (MAP) has recently received significant attention as an important step towards better approximation algorithms for finding cheap 2-edge connected subgraphs. This has culminated in a 5/3-approximation algorithm. However, the algorithm and its analysis are fairly involved and do not compare against the problem's well-known LP relaxation called the cut LP. In this paper, we propose a simple algorithm that, guided by an optimal solution to the cut LP, first selects a DFS tree and then finds a solution to MAP by computing an optimum augmentation of this tree. Using properties of extreme point solutions, we show that our algorithm always returns (in polynomial time) a better than 2-approximation when compared to the cut LP. We thereby also obtain an improved upper bound on the integrality gap of this natural relaxation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset