A Static Analysis-based Cross-Architecture Performance Prediction Using Machine Learning

06/18/2019
by   Newsha Ardalani, et al.
0

Porting code from CPU to GPU is costly and time-consuming; Unless much time is invested in development and optimization, it is not obvious, a priori, how much speed-up is achievable or how much room is left for improvement. Knowing the potential speed-up a priori can be very useful: It can save hundreds of engineering hours, help programmers with prioritization and algorithm selection. We aim to address this problem using machine learning in a supervised setting, using solely the single-threaded source code of the program, without having to run or profile the code. We propose a static analysis-based cross-architecture performance prediction framework (Static XAPP) which relies solely on program properties collected using static analysis of the CPU source code and predicts whether the potential speed-up is above or below a given threshold. We offer preliminary results that show we can achieve 94

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro