A subquadratic algorithm for the simultaneous conjugacy problem
The d-Simultaneous Conjugacy problem in the symmetric group S_n asks whether there exists a permutation τ∈ S_n such that b_j = τ^-1a_j τ holds for all j = 1,2,…, d, where a_1, a_2,… , a_d and b_1, b_2,… , b_d are given sequences of permutations in S_n. The time complexity of existing algorithms for solving the problem is O(dn^2). We show that for a given positive integer d the d-Simultaneous Conjugacy problem in S_n can be solved in o(n^2) time.
READ FULL TEXT