A Time-domain Generalized Wiener Filter for Multi-channel Speech Separation

12/07/2021
by   Yi Luo, et al.
0

Frequency-domain neural beamformers are the mainstream methods for recent multi-channel speech separation models. Despite their well-defined behaviors and the effectiveness, such frequency-domain beamformers still have the limitations of a bounded oracle performance and the difficulties of designing proper networks for the complex-valued operations. In this paper, we propose a time-domain generalized Wiener filter (TD-GWF), an extension to the conventional frequency-domain beamformers that has higher oracle performance and only involves real-valued operations. We also provide discussions on how TD-GWF can be connected to conventional frequency-domain beamformers. Experiment results show that a significant performance improvement can be achieved by replacing frequency-domain beamformers by the TD-GWF in the recently proposed sequential neural beamforming pipelines.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro