A Tree-Structured Multi-Task Model Recommender

03/10/2022
by   Moshe Y. Vardi, et al.
0

Tree-structured multi-task architectures have been employed to jointly tackle multiple vision tasks in the context of multi-task learning (MTL). The major challenge is to determine where to branch out for each task given a backbone model to optimize for both task accuracy and computation efficiency. To address the challenge, this paper proposes a recommender that, given a set of tasks and a convolutional neural network-based backbone model, automatically suggests tree-structured multi-task architectures that could achieve a high task performance while meeting a user-specified computation budget without performing model training. Extensive evaluations on popular MTL benchmarks show that the recommended architectures could achieve competitive task accuracy and computation efficiency compared with state-of-the-art MTL methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset