A unified interpretation of the Gaussian mechanism for differential privacy through the sensitivity index

09/22/2021
by   Georgios Kaissis, et al.
0

The Gaussian mechanism (GM) represents a universally employed tool for achieving differential privacy (DP), and a large body of work has been devoted to its analysis. We argue that the three prevailing interpretations of the GM, namely (ε, δ)-DP, f-DP and Rényi DP can be expressed by using a single parameter ψ, which we term the sensitivity index. ψ uniquely characterises the GM and its properties by encapsulating its two fundamental quantities: the sensitivity of the query and the magnitude of the noise perturbation. With strong links to the ROC curve and the hypothesis-testing interpretation of DP, ψ offers the practitioner a powerful method for interpreting, comparing and communicating the privacy guarantees of Gaussian mechanisms.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro