A Vine-copula extension for the HAR model

07/19/2019
by   Martin Magris, et al.
0

The heterogeneous autoregressive (HAR) model is revised by modeling the joint distribution of the four partial-volatility terms therein involved. Namely, today's, yesterday's, last week's and last month's volatility components. The joint distribution relies on a (C-) Vine copula construction, allowing to conveniently extract volatility forecasts based on the conditional expectation of today's volatility given its past terms. The proposed empirical application involves more than seven years of high-frequency transaction prices for ten stocks and evaluates the in-sample, out-of-sample and one-step-ahead forecast performance of our model for daily realized-kernel measures. The model proposed in this paper is shown to outperform the HAR counterpart under different models for marginal distributions, copula construction methods, and forecasting settings.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset