A Voice Disease Detection Method Based on MFCCs and Shallow CNN

by   Xiaoping Xie, et al.

The incidence rate of voice diseases is increasing year by year. The use of software for remote diagnosis is a technical development trend and has important practical value. Among voice diseases, common diseases that cause hoarseness include spasmodic dysphonia, vocal cord paralysis, vocal nodule, and vocal cord polyp. This paper presents a voice disease detection method that can be applied in a wide range of clinical. We cooperated with Xiangya Hospital of Central South University to collect voice samples from sixty-one different patients. The Mel Frequency Cepstrum Coefficient (MFCC) parameters are extracted as input features to describe the voice in the form of data. An innovative model combining MFCC parameters and single convolution layer CNN is proposed for fast calculation and classification. The highest accuracy we achieved was 92 internationally advanced. And we use Advanced Voice Function Assessment Databases (AVFAD) to evaluate the generalization ability of the method we proposed, which achieved an accuracy rate of 98 standard datasets show that for the pathological detection of voice diseases, our method has greatly improved in accuracy and computational efficiency.


page 1

page 4

page 7


Bulbar ALS Detection Based on Analysis of Voice Perturbation and Vibrato

On average the lack of biological markers causes a one year diagnostic d...

Smartwatch-derived Acoustic Markers for Deficits in Cognitively Relevant Everyday Functioning

Detection of subtle deficits in everyday functioning due to cognitive im...

Forecasting Disease Burden In Philippines: A Symbolic Regression Analysis

Burden of disease measures the impact of living with illness and injury ...

Parameterization of Sequence of MFCCs for DNN-based voice disorder detection

In this article a DNN-based system for detection of three common voice d...

The Trajectory of Voice Onset Time with Vocal Aging

Vocal aging, a universal process of human aging, can largely affect one'...

Augmenting Gastrointestinal Health: A Deep Learning Approach to Human Stool Recognition and Characterization in Macroscopic Images

Purpose - Functional bowel diseases, including irritable bowel syndrome,...

Please sign up or login with your details

Forgot password? Click here to reset