About kernel-based estimation of conditional Kendall's tau: finite-distance bounds and asymptotic behavior

10/15/2018
by   Alexis Derumigny, et al.
0

We study nonparametric estimators of conditional Kendall's tau, a measure of concordance between two random variables given some covariates. We prove non-asymptotic bounds with explicit constants, that hold with high probabilities. We provide "direct proofs" of the consistency and the asymptotic law of conditional Kendall's tau. A simulation study evaluates the numerical performance of such nonparametric estimators.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro