Abstraction Logic: A New Foundation for (Computer) Mathematics
Abstraction logic is a new logic, serving as a foundation of mathematics. It combines features of both predicate logic and higher-order logic: abstraction logic can be viewed both as higher-order logic minus static types as well as predicate logic plus operators and variable binding. We argue that abstraction logic is the best foundational logic possible because it maximises both simplicity and practical expressivity. This argument is supported by the observation that abstraction logic has simpler terms and a simpler notion of proof than all other general logics. At the same time, abstraction logic can formalise both intuitionistic and classical abstraction logic, and is sound and complete for these logics and all other logics extending deduction logic with equality.
READ FULL TEXT