Accounting for Vibration Noise in Stochastic Measurement Errors
The measurement of data over time and/or space is of utmost importance in a wide range of domains from engineering to physics. Devices that perform these measurements therefore need to be extremely precise to obtain correct system diagnostics and accurate predictions, consequently requiring a rigorous calibration procedure which models their errors before being employed. While the deterministic components of these errors do not represent a major modelling challenge, most of the research over the past years has focused on delivering methods that can explain and estimate the complex stochastic components of these errors. This effort has allowed to greatly improve the precision and uncertainty quantification of measurement devices but has this far not accounted for a significant stochastic noise that arises for many of these devices: vibration noise. Indeed, having filtered out physical explanations for this noise, a residual stochastic component often carries over which can drastically affect measurement precision. This component can originate from different sources, including the internal mechanics of the measurement devices as well as the movement of these devices when placed on moving objects or vehicles. To remove this disturbance from signals, this work puts forward a modelling framework for this specific type of noise and adapts the Generalized Method of Wavelet Moments to estimate these models. We deliver the asymptotic properties of this method when applied to processes that include vibration noise and show the considerable practical advantages of this approach in simulation and applied case studies.
READ FULL TEXT