Active learning for level set estimation under cost-dependent input uncertainty
As part of a quality control process in manufacturing it is often necessary to test whether all parts of a product satisfy a required property, with as few inspections as possible. When multiple inspection apparatuses with different costs and precision exist, it is desirable that testing can be carried out cost-effectively by properly controlling the trade-off between the costs and the precision. In this paper, we formulate this as a level set estimation (LSE) problem under cost-dependent input uncertainty - LSE being a type of active learning for estimating the level set, i.e., the subset of the input space in which an unknown function value is greater or smaller than a pre-determined threshold. Then, we propose a new algorithm for LSE under cost-dependent input uncertainty with theoretical convergence guarantee. We demonstrate the effectiveness of the proposed algorithm by applying it to synthetic and real datasets.
READ FULL TEXT