Active Meta-Learner for Log Analysis
The analysis of logs is a vital activity undertaken for cyber investigation, digital forensics and fault detection to enhance system and cyber resilience. However, performing log analysis is a complex task. It requires extensive knowledge of how the logs are generated and the format of the log entries used. Also, it requires extensive knowledge or expertise in the identifying anomalous log entries from normal or benign log entries. This is especially complex when the forms of anomalous entries are constrained by what are the known forms of internal or external attacks techniques or the varied forms of disruptions that may exists. New or evasive forms of such disruptions are difficult to define. The challenge of log analysis is further complicated by the volume of log entries. Even with the availability of such log data, labelling such log entries would be a massive undertaking. Hence this research seeks to address these challenges with its novel Deep Learning model that learns and improves itself progressively with inputs or corrections provided when available. The practical application of such model construct facilitates log analysis or review with abilities to learn or incorporate new patterns to spot anomalies or ignore false positives.
READ FULL TEXT