Active Transfer Learning Network: A Unified Deep Joint Spectral-Spatial Feature Learning Model For Hyperspectral Image Classification
Deep learning has recently attracted significant attention in the field of hyperspectral images (HSIs) classification. However, the construction of an efficient deep neural network (DNN) mostly relies on a large number of labeled samples being available. To address this problem, this paper proposes a unified deep network, combined with active transfer learning that can be well-trained for HSIs classification using only minimally labeled training data. More specifically, deep joint spectral-spatial feature is first extracted through hierarchical stacked sparse autoencoder (SSAE) networks. Active transfer learning is then exploited to transfer the pre-trained SSAE network and the limited training samples from the source domain to the target domain, where the SSAE network is subsequently fine-tuned using the limited labeled samples selected from both source and target domain by corresponding active learning strategies. The advantages of our proposed method are threefold: 1) the network can be effectively trained using only limited labeled samples with the help of novel active learning strategies; 2) the network is flexible and scalable enough to function across various transfer situations, including cross-dataset and intra-image; 3) the learned deep joint spectral-spatial feature representation is more generic and robust than many joint spectral-spatial feature representation. Extensive comparative evaluations demonstrate that our proposed method significantly outperforms many state-of-the-art approaches, including both traditional and deep network-based methods, on three popular datasets.
READ FULL TEXT