Adapting the Exploration Rate for Value-of-Information-Based Reinforcement Learning
In this paper, we consider the problem of adjusting the exploration rate when using value-of-information-based exploration. We do this by converting the value-of-information optimization into a problem of finding equilibria of a flow for a changing exploration rate. We then develop an efficient path-following scheme for converging to these equilibria and hence uncovering optimal action-selection policies. Under this scheme, the exploration rate is automatically adapted according to the agent's experiences. Global convergence is theoretically assured. We first evaluate our exploration-rate adaptation on the Nintendo GameBoy games Centipede and Millipede. We demonstrate aspects of the search process, like that it yields a hierarchy of state abstractions. We also show that our approach returns better policies in fewer episodes than conventional search strategies relying on heuristic, annealing-based exploration-rate adjustments. We then illustrate that these trends hold for deep, value-of-information-based agents that learn to play ten simple games and over forty more complicated games for the Nintendo GameBoy system. Performance either near or well above the level of human play is observed.
READ FULL TEXT