Adversarial Framing for Image and Video Classification

12/11/2018
by   Michał Zając, et al.
0

Neural networks are prone to adversarial attacks. In general, such attacks deteriorate the quality of the input by either slightly modifying most of its pixels, or by occluding it with a patch. In this paper, we propose a method that keeps the image unchanged and only adds an adversarial framing on the border of the image. We show empirically that our method is able to successfully attack state-of-the-art methods on both image and video classification problems. Notably, the proposed method results in a universal attack which is very fast at test time. Source code can be found at https://github.com/zajaczajac/adv_framing .

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset