Adversarial network training using higher-order moments in a modified Wasserstein distance
Generative-adversarial networks (GANs) have been used to produce data closely resembling example data in a compressed, latent space that is close to sufficient for reconstruction in the original vector space. The Wasserstein metric has been used as an alternative to binary cross-entropy, producing more numerically stable GANs with greater mode covering behavior. Here, a generalization of the Wasserstein distance, using higher-order moments than the mean, is derived. Training a GAN with this higher-order Wasserstein metric is demonstrated to exhibit superior performance, even when adjusted for slightly higher computational cost. This is illustrated generating synthetic antibody sequences.
READ FULL TEXT